자연형 하중도 형성 구조물 및 시공방법

기/술/개/요

생물 서식처 기능의 하중도(섬)가 자연적으로 생성될 수 있도록 모래퇴적을 유도하는 자연형 하중도 형성 기술

기존 기술의 문제점

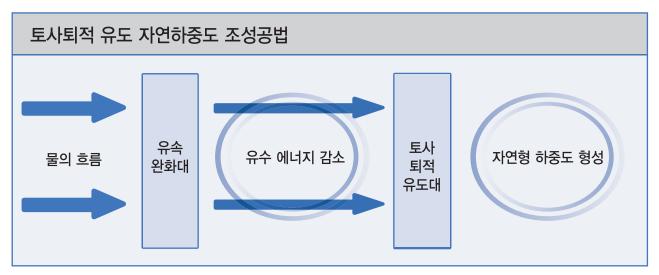
- 인위적인 인공하중도 조성
 - 하천 정비에 따른 하중도 인공 조성
- 하천생물들 서식 환경을 파괴
 - 인공으로 조성된 하중도는 하천의 흐름과 토사 공급의 차단 부작용 유발로 하천생물 서식 환경 파괴
- 지속적인 유지보수 필요
 - 홍수 등에 의한 파괴 또는 훼손 시 지속적인 유지 · 보수 필요

차별성 및 효과

● 차별성

하중도 형성을 위해 토사퇴적을 자연스럽게 유도

● 효과


하천생태계 건전성 제공

- · 침식,퇴적의 인위적 억제가 아닌 하천의 흐름과 변동을 허용한 토사퇴적 유도 (구조적 안정성 겸비 가능)
- ㆍ 자연하중도 형성으로 하천 생물 서식공간 확보 가능(지속적, 연속적인 하천생물 이동통로 확보)
- · 토사퇴적 전, 여울 기능으로 수질개선 효과
- ㆍ 자연복원력에 의한 퇴적유도로 훼손된 하중도의 재형성(본래 모습으로 하천지형 회복 가능)
- · 기존 하중도 조성 금액 대비 70% 절감 효과

기술 구현 과정

● 기술구현 원리

- 유속감세 기술 적용으로 인한 단계적인 물의 흐름 약화 조절 가능
- 토사퇴적유도 기술 적용으로 인한 하천모래 자연 퇴적 유도 (퇴적양 적을 시 여울 기능에 따른 수질 정화)

수요처 및 권리현황

● 수요처

기술 수요	적용처
· 하천복원 설계 및 시공 社 · 복원소재 社	・ 국가 및 지자체 중소하천

- _ 국내 등록특허 1건
- _ 대표특허

발명의 명칭	특허번호	비고
토사퇴적을 유도할 수 있는 자연형 하중도형성 구조물 및 그 시공방법	10-1128365	등록

추가기술정보	
기술분류	건설교통〉수공시스템기술
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 ■ 신뢰성평가 □ 상용품 제작 □ 사업화
시장전망	*하천관련 국내 시장 2015년 약 5조원으로 추정 *자연형 하천복원분야 투자계획 2015년 총 2조 758억원
기술문의	한국건설기술연구원 ahnhk@kict.re.kr
이전문의	(주)윕스 정영기 주임연구원 Tel. 02-726-1059 E-mail. kardam@wips.co.kr

친환경 경량무기발포 세라믹보드를 이용한 커튼월 내화성능 향상공법

기/술/개/요

순환자원(폐유리분말, 플라이애쉬등)과 발포제로 제조된 친환경 경량무기발포 세라믹보드를 이용한 알루미늄커튼월 Back panel의 대체로 내화성능 및 결로성능을 향상시키는 공법

기존 기술의 문제점

- ◉ 단열재의 내화성능 부족
 - 커튼월에 적용되는 단열재의 경우, 화재발생시 내화성능 부족으로 화재 확산 용이
- 결로 등에 의한 단열재 성능 저하
 - 내부 결로 발생으로 단열재의 단열성능 장기적 저하
- Spandrel을 통한 화재확산
 - Spandrel 부위 및 층간슬래브를 통한 화염 전파

차별성 및 효과

차별성

불연 경량무기발포 세라믹 보드를 이용한 커튼월 내화성능 향상

● 기술적 효과

경량무기발포 세라믹보드

· 불연 경량무기발포 세라믹보드 제조 및 양산기술 확보

친환경 세라믹보드 적용공법 확보

· 친환경 세라믹보드를 적용한 알루미늄 커튼월 시공기술 및 공법 확보

Back Panel 부위 성능향상

· Back Panel 결로성능 및 내화성능향상으로 화재 연소확대 방지

설치용이 및 적용 다양성

- · 기술의 숙련도, 인력차 없이 설치가능 · 다양한 커튼월 공법 적용 가능

③ 경제적 효과

내화성능 향상			
화재확산 알루미늄 세라믹보드 방지구조 커튼월 커튼월			
15분	26분	32분	

단열 및 결로성능 향상

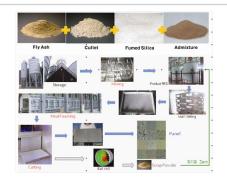
습(함수율증감)반복에 따른 열전도율 증가율

글라스울	세라믹보드
7.3%	2.3%

겨제서 향사

646 86	
알루미늄 커튼월	세라믹보드 커튼월
63,400원/m²	62,000원/m²(약 98%)

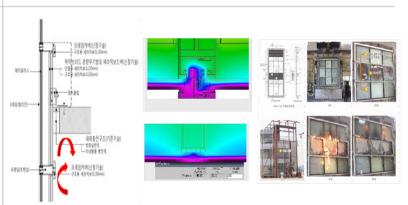
시공실적 및 기술내용


● 시공실적

- 현대산업개발 기술연구소 Test Bed 시험시공
- 한국세라믹기술원 진주사옥 설계 반영

기술내용

친환경 경량무기발포 세라믹보드


폐유리분말, 플라이애시 등의 활용으로 경량무기발포 세라믹 보드 제조

경량무기발포 세라믹보드 제조기술

경량무기발포 세라믹보드를 이용한 커튼월 내화성능 향상공법

Back Panel, 프레임에 경량무기발포 세라믹보드를 적용한 기존 커튼월보다 내화성능이 우수한 커튼월의 내화성능 향상 공법

내화성능 향상공법 단열성능 비교

커튼월 구조성능 및 내화성능 비교

수요처 및 권리현황

수요처

기술 수요	적용처
· 공공기관 · 건설社 · 건축사 사무소	· 일반 건물 · 고층 건축물

권리현황

- 국내 등록특허 3건, 국내 출원특허 2건
- _ 대표특허

발명의 명칭	특허번호	비고
내화성 커튼월 경량 내화보드용 내화 단열 접착제의 조성물 및 이를 이용한 이음방법	10-1263417	등록
내화성 경량 무기질보드를 이용한 커튼월 구조 및 이의 시공방법	10-1131986	등록

추가기술정보	
기술분류	건설시공,재료기술〉 건축시공기술
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 ■ 상용품 제작 □ 사업화
시장전망	*국내외 커튼월 평균성장률 : 약 10% 증가 예상 *국내 커튼월 시장규모 : 1조원
기술문의	한국세라믹기술원 songhun@kicet.re.kr
이전문의	(주)웝스 정영기 주임연구원 Tel, 02-726-1059 E-mail, kardam@wips.co.kr

안정성 향상 및 공기단축이 가능한 확공 지압형 앵커 시스템

기/술/개/요

앵커 정착부 확공으로 역학적 안정성이 높은 지압형 앵커시스템 도입과 지표로 돌출된 지압판의 단순화로 수압구조물이 필요 없는 앵커시스템 개발

기존 기술의 문제점

- 장기적 내구성 저하 및 공기지연
 - 그라우팅 후 인장으로 인한 그라우트 파괴 및 균열 발생
 - 진행성 파괴로 인한 장기적 내구성 저하, 양생기간 필요로 공기 지연 문제 발생
- 수압판의 지표면 노출로 인한 안정성 미확보
 - 수압판 지표 노출로 인한 외부충격 무방비
 - 지표면과 수압판 분리로 비탈면 안정성 미확보
 - 편심에 의한 집중하중 발생으로 수압구조물 파손
- 지압판 지표 돌출구조로 주변경관 부조화

차별성 및 효과

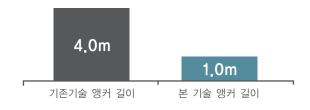
● 차별성

인장 후 그라우팅 / 앵커의 정착부를 확공 / 지압판을 근입(지표면 안측으로 위치)

이 기술적 효과

앵커의 안정성 확보 및 품질향상

- · 정착부 확공으로 역학적 안정성, 앵커두부 근입으로 구조적 안정성 확보
- · 지반과 일체거동으로 지진동에도 안정적
- · 진행성 파괴 방지
- · 인장 후 그라우팅으로 그라우트 품질 향상

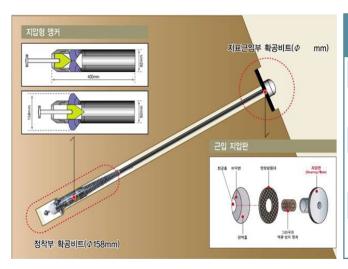

공기단축 등으로 시공성 개선

- · 인장 후 즉시 그라우팅 가능하여 7일 이상 공기 단축 가능
- · 앵커두부처리 기계화로 수압구조물 생략 가능

● 경제적 효과

앵커길이 감소 등으로 자재비 절감

- · 앵커길이 4배 감소
- · 숏크리트. 뒤채움. 수압구조물 불필요
- · 비표면 돌출로 지압판 파손 감소, 유지관리 비용 절감



개발현황 및 기술내용

개발현황

- 기존 수압판과 본 기술의 지압판 비교분석 현장 시험시공 완료
 - · 충격력 300kN일때: 기존 수압판 20~30mm의 변위발생 대비 본 기술 지압판 1~4mm의 변위 발생
 - ㆍ 굴곡이 심한 지표면에 설치한 경우: 기존 수압판 파손 대비 본 기술 지압판 정상형태 유지
- 건설신기술, 녹색기술, 철도신기술, 수자원 신기술 지정

● 기술내용

그라우팅 전, 인장이 가능하도록 공정개선

확공기술개발

* 두부와 정착부에서 확공 가능하도록 확공비트를 개발 하여 지압형 앵커와 지표근입 지압판 적용

확공지압형 앵커체

* 확공지압형 앵커체 개발로 정착장 감소, 역학적 안정성 및 경제성 향상

지표근입 지압판

* 콘크리트 수압판이 필요없도록 지압판을 지표에 근입시켜 구조적 안정성 및 경관성 향상

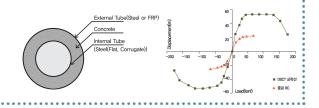
수요처 및 권리현황

● 수요처

기술 수요	적용처
· 사면보강공사 및 지반보강관련 시공 社 · 엔지니어링 社	· 지반이 약한 지역 · 보강공사가 필요한 지역

- _ 국내 등록특허 6건
- _ 대표특허

발명의 명칭	특허번호	비고
확공지압형 앵커 시공방법	10-0993575	등록
확공지압형 앵커 구조	10-0037860	등록


 추가기술정보		
기술분류	건설교통)건설시공재료기술	
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 ■ 상용품 제작 □ 사업화	
시장전망	*앵커관련 세계시장 규모 2015년 약 12억불 예상 *앵커관련 국내시장 규모 2016년 약 3억 8천불 예상	
기술문의	세종이엔씨 amos4774@hanmail_net	
이전문의	(주)윕스 정영기 주임연구원 Tel. 02-726-1059 E-mail. kardam@wips.co.kr	

조립식 내부 구속 중공 CFT교각

기/술/개/요

교각 단면 부재의 외측과 내측에 강관이 존재하고 중앙에 콘크리트를 충전시켜, CFT(Concrete Filled Tube) 단면이 중공화된 조립식 교각 및 그 시공방법

기존 기술의 문제점

- 장기간 공사기간 소요
 - 기존 현장 타설 교각은 일일 시공 가능 높이의 제한, 날씨의 영향 등으로 공사 지체 현상 발생
- ◉ 필요이상의 단면 요구
 - 교각의 모멘트 저항강도 증진을 위해 필요이상의 대단면이 요구되어 재료 소요비용 높음

차별성 및 효과

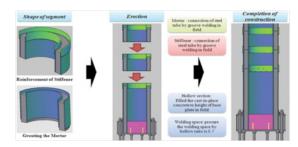
● 차별성

프리캐스트 교각 현장 조립시공으로 인한 공기단축

● 기술적 효과

자중 감소를 통한 내진성능 향상

- · 내부튜브에 의한 연성도 확보
- · 콘크리트 강도 증가
- · 취성파괴 방지
- · 중공 단면에 의한 자중 저감
- · 조립시공 용이

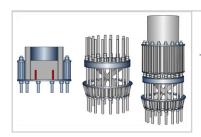

교각 품질 향상

· 실내 제작으로 품질관리 용이

◉ 경제적 효과

교각건설 공기 단축

- · 조립식 공법으로 공정 단순화
- · 급속 시공으로 공기감소
- 전체 교량 건설 기간 단축

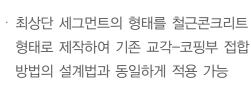


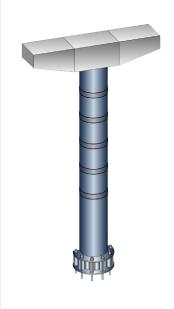
기술 내용

● 교각 구성품

● 조립식 교각 전경

교각/코핑 접합부


철근콘크리트 형태로 최상단 세그먼트를 제작하여 기존 교각-코핑부 접합방법의 설계법과 동일하게 적용 가능


교각 세그먼트 접합부

· 내외부 강관 맞대기 용접 후 세로판을 필렛용접하여 일체거동시키며, 전단키를 만들어 전단력에 대한 저항성 확보

교각/코핑 접합부

수요처 및 권리현황

🌘 수요처

기술 수요	적용처
· 교량설계/시공 전문社 · 종합 엔지니어링社 · 토목건설社 · 기타 교량 전문社	정부기관, 공단, 지방자치단체 등 발주처한국도로공사, 한국철도공사 등 정부투자기관

● 권리현황

- 국내 등록특허 7건 / 공개특허 1건 / 중국 공개특허 1건
- _ 대표특허

발명의 명칭	특허번호	비고
중공합성교각	10-0756517	등록
조립식 중공 세그먼트 교각	10-1263557	등록

추가기술정보 시설물 설계·해석기술〉교량 기술분류 건설시공 · 재료기술〉토목 시공기술 □ 기술개념확립 □ 연구실환경검증 ■ 시제품제작 기술수준 □ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화 * '11~' 15 교통시설확충 시장전망 146조원 소요 (국토부) 고려대학교 기술문의 qevno@korea.ac.kr (주)윕스 정영기 주임연구원 Tel. 02-726-1059 이전문의 E-mail. kardam@wips.co.kr

국내 석탄회(Bottom Ash 포함)를 이용한 터널용 보수보강 모르타르

기/술/개/요

터널 수리구조물 보수보강시 사용되는 터널보수재로, 석탄회 (Bottom Ash) 및 초속경 무기결합재(JKR 바인더)를 이용하여 응결시간, 압축/부착강도, 내구성 및 내염해성이 우수하고 신속한 보수가 가능한 자원 재순환형 기능성 보수/보강 모르타르

기존 기술의 문제점

- 품질관리 및 전처리의 어려움
 - 석탄회를 이용한 기존 제품의 압축·부착강도 저하 및 준비·처리비용 증가로 실적용 어려움
- 시공 시간의 증가
 - 충분한 양생기간 필요한 일반 콘크리트의 시공속도, 공기 지연으로 신속 보수보강 어려움
- 동절기 시공의 어려움
 - 속경성 모르타르로 동절기 시공시 강도발현 저하 등 품질 저하 발생
 - 열악한 시공조건(주변온도5도씨 이하)에 요구되는 품질기준 미정립

차별성 및 효과

🎃 차별성

석탄회 조분(Bottom Ash) 및 초속경 무기결합재(JKR 바인더)를 이용한 터널 보수보강 모르타르

● 기술적 효과

석탄회 30%이상 재활용 가능

· 제품 총량의 30% 이상 석탄회+산업부산물로 치환 가능 (품질 유지)

동절기 강도발현율 향상

- · 3시간 압축강도 6N/mm² 이상
- · 장기강도 40N/mm² 이상
- · 부착강도 2N/mm² 이상
- · 플로우 250mm, 초결 40분 이상
- * 주변온도 5℃ 이하 및 석탄회 + 산업부산물 30%이상 치환 기준

◎ 경제적 효과

석탄회 폐기 비용 절감 효과

· 산업폐기물의 재활용으로 폐기물 처리비용 감소

기존 기술대비 20%비용 절감

· 기존 원재료의 30% 이상 산업부산물로 치환 가능하여 기존 제품대비 20% 이상 단가 절감 효과

시공실적 및 기술내용

● 기술구현 과정

- 일본 카지마건설 기술연구소와 MOU체결(2건)_2003.04
 - · 산업부산물을 유효이용한 SL재 및 수로터널보수보강모르타르. 핵심재료 JKR바인더 개발
- 산업폐기물(석탄회&슬래그)활용 초속경 바닥재 개발_2004.02
 - 일본의 아오모리중앙병원에 매직플로우란 상표로 시험시공
- 빗물 유도로의 보수/보강 모르타르_2006.03
 - · 후지산 후지터널 양측 빗물유도로의 보수 / 보강용 페이스트 및 모르타르 개발, 시험시공
- 고인성보드 이용한 터널보수/보강공법의 개발_2007.03
 - · 일본의 대형 재료업체 3개사와 함께 약 15억원의 예산으로 시험시공

기술내용

- 자원순환형 보수 모르타르
· 초속경/고강도/고유동 무기계 결합재와 특수 혼화제 및
산업부산물/특수첨가제로
구성된 결합재

수요처 및 권리현황

● 수요처

기술 수요	적용처
· 도로공사, 터널관련 설계/건설 시공/유지보수社	・ 터널 및 배수로 등

- _ 국내 특허출원 2건(등록 1건)
- _ 대표특허

발명의 명칭	특허번호	비고
보수용 모르타르 및 이를 이용한 터널보수공법	10-1048669	등록
내마모, 내충격 및 내염해성이 우수한 보수용 모르타르 및 이를 이용한 터널보수공법	10-2010-0082482	출원

추가기술정보	
기술분류	도로교통〉교통시설기반기술
기술수준	 □ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 ■ 상용품 제작 □ 사업화
시장전망	* 터널보수재 세계시장 2013년 약 20조원 * 터널보수재 국내시장 2013년 약 800억원
기술문의	두영티앤에스 ck4002@naver.com
이전문의	(주)윕스 정영기 주임연구원 Tel. 02-726-1059 E-mail. kardam@wips.co.kr

산업부산물을 활용한 칼라 반강성 도로 포장재

기/술/개/요

일액형 바인더와 산업부산물인 슬래그를 이용한 속경성 친환경 소재를 공극율 높은 개립아스팔트 또는 단입도 투수콘과 접목한 칼라 반강성 도로 포장재 기술

기존 기술의 문제점

- 무기계 소재
 - 짧은 수명, 변색 용이, 분진 발생 및 주행 안전성 저하
- 유기계 포장
 - 용제 휘발에 의한 환경문제 및 긴 작업시간으로 공사비용 증가
- 콘크리트 및 아스팔트
 - 콘크리트 시공 및 양생에 긴 시간 소요, 건조수축에 의한 균열 발생
 - 아스팔트 소성변형으로 인한 포장수명 단축, 유지보수비용 증가

차별성 및 효과

● 차별성

일액형 바인더와 산업부산물인 슬래그를 사용한 속경성 친환경소재

○ 기술적 효과

두께 감소 및 강도 증대 기존두께 신기술 두께 10~20cm 5cm

- · 열섬효과 감소(종래대비 5~10℃감소)로 인한 내열성 증대 및 강도발현율 증가로 사계절 공사 가능
- ㆍ 기존 아스팔트 및 콘크리트와 부착 가능
- · 균열발생 최소화
- ㆍ 자외선으로 인한 색상 변형 감소

◎ 경제적 효과

기존 기술대비 25% 비용 절감

· 원재료의 30% 이상 산업부산물로 치환 가능하여 기존 제품대비 25%이상 단가 절감 효과

작업시간 감소

· 속경성 타입으로 타설 후 2~3시간내 교통개방 가능

유지보수비 절감

· 노후부위 보수공사 가능하여 유지보수비 절감

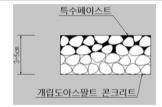
개발현황 및 시스템

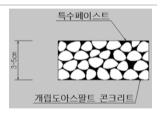
개발현황

- 일본 카지마건설 기술연구소와 MOU체결 (2003,04)
 - · 산업부산물을 이용한 자기수평바닥재(SL재) 및 수로터널 보수보강 모르타르 개발
 - · 핵심재료 JKR바인더 개발
- 이액형 반강성제품 연구개발 및 상품화(2005.07)
 - ㆍ 어린이 보호구역 및 자전거도로 시공(전침투형/반침투형)
- 중대형 차로용 일액형 PCP 연구개발(2010.11)
 - · 새만금, 영인 아라뱃길 시험시공 포함 다수 현장 적용

시스템구성

모체(아스팔트)종류


포장단면


반침투형

자전거도로 및 인도 적용 가능

전침투형

버스전용차선 포함 중장비이용 도로적용

수요처 및 권리현황

수요처

기술 수요	적용처
· 도로공사, 국토관리청 · 도로관련 설계/건설시공/ 유지보수관련 社	· 일반도로 · 자전거도로 · 중장비 이용도로 · 버스전용차선

- 국내 등록특허 3건 및 출원특허 1건
- 대표특허

발명의 명칭	특허번호	비고
초속경 PCP 조성물 및 이를 이용한 반강성 도로포장 방법	10-1139902	등록
칼라바닥재용 폴리머 시멘트 조성물 및 그 포장방법	10-0796209	등록

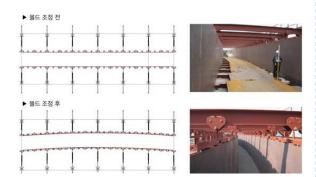
축	가기술정보	
기술분류	도로교통기술〉교통시설기반 기술	
기술수준	 □ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 ■ 상용품 제작 □ 사업화 	
시장전망	* 세계 도로포장 시장: 6조원 * 국내 도로포장 시장: 3천억원	
기술문의	두영티앤에스 ck4002@naver.com	
이전문의	(주)윕스 정영기 주임연구원 Tel. 02-726-1059 E-mail. kardam@wips.co.kr	

Smart Mold시스템을 이용한 프리캐스트 곡선 PSC 거더교

기/술/개/요

다양한 곡률 조절이 가능한 Smart Mold를 사용하여 곡선 PSC(Prestressed concrete) 거더를 제작하는 프리캐스트 곡선 PSC 교량 기술

기존 기술대비 차별성


차별성 및 효과

차별성

다양한 곡률반경과 거더 길이 조절이 가능한 Smart Mold를 이용하여 교량 거더 제작

◉ 기술적 효과

Smart Mold 사용으로 곡선빔 제작성 우수

- · 하나의 몰드로 다양한 곡률반경과 거더길이 조절이 가능한 곡선 거더 제작가능
- · 조립,해체가 용이하여 현장으로 운반이 가능하므로 현장 제작장에서 거더 제작 가능

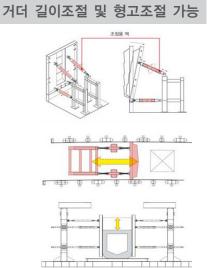
경제적 효과

강교대비 공사 30% 이상 절감 가능

구 분	Curved PSC Box Girder (SB40)	Steel Box Girder
성능 다이아 그램	기능성 고 고 구조인전성 유지관리성	기능성 ** 미관성 ** 구조안전성 유지관리성 시공성
총LCC	3.74억원	6.00억원
절감%	37%(2,26억원)	_

✓ 분석기준

'고속도로교량의 생애주기비용(LCC) B=8.5m,L=40.0m 분석지침(2004), 도로공사' 적용.


✓ 대 상

시공실적 및 기술 내용

- 시공실적
 - 동대구역 고가교 개체 및 확장공사(대구광역시) 시공중이며 다수교량 설계반영
- 기술내용

수요처 및 권리현황

● 수요처

기술 수요	적용처
지방국토관리청한국도로공사 등의 공기업국내외 건설 社국내외 교량설계社	· 국내외 도로교 건설 분야 · 국내외 철도교 건설 분야 · 국내외 경전철 건설 분야 · 국내외 모노레일 건설 분야

● 권리현황

_ 국내 등록특허 4건

발명의 명칭	특허번호	비고
다양한 곡률반경의 곡선형 빔 제조를 위한 거푸집	10-1031902	등록
조립식 반력프레임을 이용한 빔 제작장치 및 이를 이용한 빔 제작방법	10-1124692	등록
측면거푸집 잭장치와 단부거푸집 회전설치장치를 이용한 빔 제작장치	10-1081791	등록
곡선빔용 전도방지 장치	10-1257823	등록

추가기술정보		
기술분류	건설시공,재료기술〉 토목시공기술	
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 ■ 상용품 제작 □ 사업화	
시장전망	* 해외 교량 시장규모: 약 5000억원 * 국내 교량 시장규모: 약 3000억원	
기술문의	브릿지테크놀러지 bridgetech@hanmail.net	
이전문의	(주)윕스 정영기 주임연구원 Tel, 02-726-1059 E-mail, kardam@wips.co.kr	

콘크리트 구조물의 균열부 자기치유를 위한 반응성 실리콘화합물 코팅재 개발 및 그 적용성 평가

기/술/개/요

- 〉 **콘크리트 균열 자기치유용 마이크로캡슐** : 콘크리트 표면처리재의 손상 발생시 마이크로 캡슐의 물질로 표면처리재를 자기치유하는 시스템
- > **콘크리트 균열 센서용 마이크로캡슐**: 구조물 균열 발생시 인광물질이 흘러나와 육안으로 균열을 확인할 수 있는 시스템

기존 기<u>술의 문제점</u>

- 표면처리재 손상에 의한 콘크리트 내구성 저하
 - 균열 발생시 이차적인 자기 치유 능력 부재로 콘크리트 열화인자 침투로 내구성 저하 도래
- 지하 콘크리트 구조물 균열 정도 측정 어려움
- 유지관리로 인한 고비용 소요
 - 균열 발생, 철근 부식으로 인한 내구성 저하 및 유지관리에 막대한 비용 발생

차별성 및 효과

● 차별성

자기치유재(수반응, 광반응성, 공기반응성) 마이크로캡슐화 / 형광물질 마이크로캡슐화

◉ 기술적 효과

Self healing 표면처리시스템 구축

· 콘크리트 균열 폭 0.3mm이내까지 자기치유 가능한 Self healing 표면처리 시스템구축

품질 안전성 확보

· 콘크리트 구조물 보호 제품의 품질 및 관리기준 확보

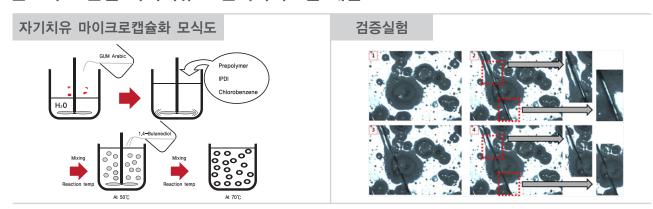
구조물 내구성 확보

· 구조물의 내구성 향상 기술 확보

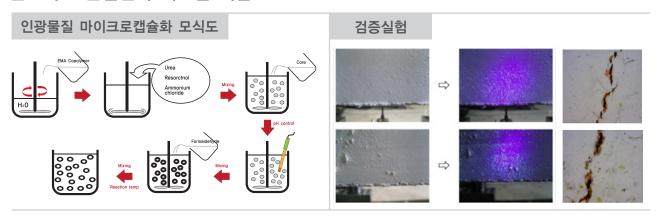
◉ 경제적 효과

유지관리 비용 45% 절감

구 분	보수 주기	유지관리비용	절감율
종래기술	3년	107,412(원/m²)	450/
개발기술	6년	59,206(원/m²)	45%


이산화탄소 저감

· 시멘트 저사용으로 인한 CO2 저감



개발현황 및 기술내용

● 콘크리트 균열 자기치유 표면처리시스템 개발

● 콘크리트 균열센서 시스템 개발

수요처 및 권리현황

수요처

기술 수요	적용처
 구조물 유지관리社 보수 · 보호재료 제조社 구조물 안전진단社 콘크리트 제조社 	· 건설구조물 유지관리 분야 · SOC구조물(교량, 터널 등) · 지하 건설구조물 · 강구조물

● 권리현황

_ 국내 등록특허 3건

발명의 명칭	특허번호	비고
마이크로캡슐, 자기치유 코팅재 형성용 조성물 및 캡슐 분산형 자기치유 코팅재와 그의 제조방법	10-1168038	등록
신나모일기 함유 화합물 및 그의 제조방법	10-1094873	등록
마이크로 캡슐, 인광균열 센서 형성용 조 성물, 캡슐분산형 인광균열센서와 그의 제 조방법 및 구조물의 균열 검사방법	10-1259068	등록

Ž	추가기술정보	
기술분류	건설시공 · 재료기술〉 친환경 · 재생건설재료	
기술수준	□ 기술개념확립 □ 연구실환경검증 ■ 시제품제작 □ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화	
시장전망	* 국내 개·보수 시장규모: 20조원 예상(~2015) * 구조물 유지관리 시장규모: 12조원 예상	
기술문의	삼중씨엠텍 kkokkode@nate.com	
이전문의	(주)윕스 정영기 주임연구원 Tel. 02-726-1059 E-mail. kardam@wips.co.kr	

에너지 절감 및 결로방지 효과가 있는 투명발열유리

기/술/개/요

탄소나노튜브(CNT)와 은(Ag)나노와이어 복합박막의 이용으로 확보된 투명성으로, 발열을 통한 결로 방지 및 난방 효과를 낼 수 있는 투명발열유리

기술개발의 배경

- 창호를 통한 열 손실량은 전체 건물 열손실량의 20~45% 수준
 - 창호는 벽체에 비해 8∼10배 이상 낮은 단열특성을 가지기 때문에 창호를 통한 열손실량이 최고 45% 발생
- 결로 현상은 건축물 표면, 마감자재 및 가구 오염, 내부 훼손을 초래
 - 결로현상은 건축물에서 가장 빈번히 발생하는 하자로, 건축물의 표면과 내부를 훼손시키고 곰팡이 등의 원인이 되어 마감자재 및 가구오염을 유발함

차별성 및 효과

● 차별성

탄소나노튜브와 은 나노와이어를 사용하여 발열이 가능한 투명유리 제조

이 기술적 효과

결로 방지로 실내 오염 방지

- · 결로 현상으로 인한 실내 공간 오염(곰팡이, 미생물 등) 발생 및 건축물의 노후화 예방
- ㆍ 청소와 같은 관리 비용 증가 문제 해결

친환경 고효율 건축물 요소기술로 적용

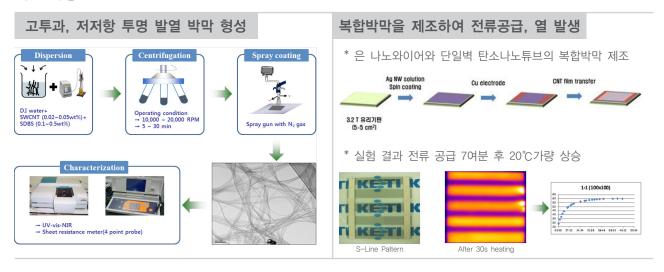
· 열손실량 감소 효과를 이용한 그린빌딩, 제로 에너지 하우스 건설로 친환경 건물 인증에 기여

◉ 경제적 효과

발열 창호를 통한 난방비 절감

· 겨울철 창호를 난방원으로 활용 시 냉복사 (cold draft)현상을 방지하여 불쾌감 해소 및 실내 난방비 절감

- ◆ 창호에서 발생하는 열손실 방지
- ◆ 창호를 난방원으로 확용



기술의 구현방법

개발기술

- 저 저항 일액형 코팅 용액 제조 기술
- 대면적 투명 발열 창호 제조 기술 (가시광 투과율 〉 70%, 면저항 〈 40- Ω/cm2)
- 온/습도 측정을 통한 자동전원 제어 시스템

● 기술내용

수요처 및 권리현황

수요처

기술 수요	적용처
· 창호 시스템 제조社	· 건물 외벽
· 건축용 유리 제조社	· 자동차 전면 유리
· 기능성 유리 제조社	· 항공기 전면 유리

- 국내 특허출원 2건
- _ 대표특허

발명의 명칭	특허번호	비고
면상 발열 히터	12-0151903	출원
면상 발열 히터 및 이를 포함하는 창호시스템	12-0049049	출원

추가기술정보	
기술분류	건설시공 · 재료기술〉 친환경 · 재생건설재료
기술수준	□ 기술개념확립 □ 연구실환경검증 ■ 시제품제작 □ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화
시장전망	* 전 세계 유리시장 규모는 연평균 4% 성장하여 2015년 2,530억 달러 전망 * 국내 기능성 유리 시장의 경우 약 3,000억원, 2014년 6,000억원 전망
기술문의	전자부품연구원 changsh@keti.re.kr
이전문의	(주)윕스 정영기 주임연구원 Tel. 02-726-1059 E-mail, kardam@wips.co.kr

무동력 빗물 배제, 여과, 저장, 인공함양 시스템

기/술/개/요

위치에너지 활용을 통해 건물 상층부 무동력 빗물 저장과 이 과정에서 발생하는 유출수의 지하인공 함양이 가능한 빗물저장 시스템

기존 기술의 문제점

- 도심지역 빗물 저장탱크 공간 확보 부족
 - 지상 공간 제약에 따른 지하저장방식 채택
 - 건물 옥상등에 저장하기 위해 고용량 동력펌프 사용
- 빗물 포집 공간이 가지는 위치에너지 미활용
 - 고용량 동력펌프 이용으로 건물 시설이 보유한 최초 빗물포집 위치 에너지 미활용
- 기후 변화에 따른 집중호우시 홍수 유출수 저감 대책 필요
 - 저수탱크 용량 초과수의 우수관 방류로 인한 저지대 침수피해 저감능력 제한

차별성 및 효과

● 차별성

위치에너지를 활용한 무동력 빗물저장, 빗물 저장공간 확보를 위한 인공함양 시스템

● 기술적 효과

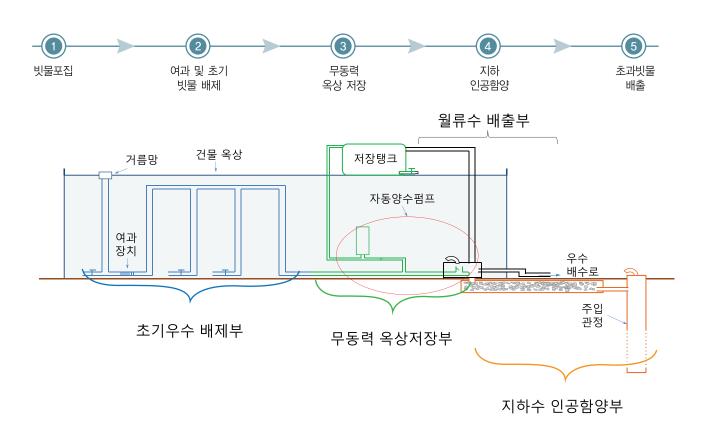
건물 지붕면 위치에너지 이용

- · 위치에너지 활용: 높은 곳 빗물 저장 · 공급 가능
- · 옥상 저장탱크 활용 가능
- · 공간제약 큰 도심지 유리

지하 인공함양

- ㆍ 저장탱크 초과 빗물 땅속 주입
- · 홍수 유출수 감소
- · 도심지 저지대 침수피해 저감

◉ 경제적 효과


비용절감

- · 빗물 재이용에 따른 수도요금 절약
- · 홍수피해 저감으로 인한 재해복구 비용 절약
- · 인공함양에 따른 지하수 자원량 증가

기술 구현 과정

수요처 및 권리현황

● 수요처

기술 수요	적용처
· 빗물이용 및 소방방재 관련	· 지자체 빗물이용 및 소방방재
시공社	분야(빗물이용 의무화 시설)

◉ 권리현황

- 국내 등록특허 2건 / PCT 출원특허 1건
- 대표특허

발명의 명칭	특허번호	비고
초기 우수 배제 처리장치 및 방법	10-1227920	등록
우수 초기배제, 저장, 인공함양 장치 및 이를 이용한 우수 초기배제 저장, 인공함양방법	10-1232743	등록

추가기술정보	
기술분류	건설〉환경설비기술 건설 〉 시설물 안전·유지관리기술 환경〉물관리
기술수준	□ 기술개념확립 ■ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화
시장전망	*해외 재이용수분야 : 2.1백억\$ (2025년 전망, 환경부) *국내 빗물 재이용분야 : 2121년까지 7,350억원 투자
기술문의	한국지질자원연구원 yckim@kigam.re.kr
이전문의	(주)윕스 정영기 주임연구원 Tel, 02-726-1059 E-mail, kardam@wips.co.kr

