U-교량안전관리 시스템

기/술/개/요

교량에 설치된 스마트 센서(비정상적 거동 및 균열, 파손 계측)로부터 각종 데이터를 수집하고, 인터넷기반 평가 시스템을 이용한 실시간 안정성, 내구성 분석을 토대로 데이터베이스를 구축하는 교량 안전관리 시스템

기존 기술의 문제점

- 국소적 손상 감지 불가
 - 환경요인(온도)에 민감한 알고리즘: 높은 오경보 가능성, 구조물 안전상태 파악 불가
- 무선센서 배터리 교환방식 시스템 의존
 - 센서 부착위치로 인한 배터리 교체 작업의 위험성
 - 주기적 교체로 인한 추가유지비용발생
- 단순 통계적 방법에 따른 안정성 평가
 - 실시간 구조물 손상정보 이용 불가능
 - 전용 소프트웨어 사용으로 사용자 접근 제한

차별성 및 효과

차별성

교량 유지관리를 위한 계측/분석/조회 관련 기능 통합제공

◉ 기술적 효과

압전센서 기반 국부손상 감지

- · 실시간 구조물 손상 판단가능
- · 오경보 최소화, 종합적 안전 상태 파악가능

안정적인 전원공급을 위한 효율적 충전시스템

- · 배터리 교환 필요 없는 2차유도 진동발전 시스템
- · 경제적이고 용이한 유지관리
- · 전력소모 최소화, 데이터의 안정적 전송

인터넷기반 안전성 평가시스템

- · 실시간 구조해석을 이용한 안전성평가
- · 교량 손상정보 실시간 반영
- · 다양한 유지관리자 접근용이

● 경제적 효과

유지관리 시스템 비용 감소

- · 교량진동을 이용한 무선센서 전력공급: 추가 유지관리 비용 감소
- · 자가발전형 무선가속도 시스템 적용: 유선가속도계 대비 1/10수준 유지비용 감소

구축비용 20% 절감

단위:천원

종래시스템 구축비용	신기술 구축비용
220,863	183,050


^{*} 세종시 학나래교 안전관리시스템 구축비용 기준

^{*} 계측장비, 계측센서, 전산장비 및 프로그램, 가설비용 기준

◉ 개발현황

- 세종시 금강2교(한두리대교) 및 금강 1교(학나래대교) 설치 U-교량안전관리 시스템의 실제 구조물 적용과 시스템 운영을 통해 기능 검증과 고도화하는 파일럿테스트 수행 종합적인 상황처리를 관제하는 U-Eco City 통합플랫폼과의 연계 테스트 완료
- 삼척시 정라동 삼척교 시범적용 예정(12억)
- U-교량안전관리 시스템 구성요소

수요처 및 권리현황

● 수요처

기술 수요	적용처
· 시설물 유지관리 관련社	· 교량, 빌딩, 발전소, 댐 등 사회기반 시설물의 통합 안전관리
· 안전진단 관련社	기방자치단체, 시공업체

- _ 국내 프로그램 저작권 등록 1건
- 저작권 프로그램

프로그램명	등록번호	비고
시간의존성 3차원 RC 기둥 보 해석	S-10-007042-2	등록

추가기술정보		
기술분류	시설물 설계·해석기술)교량 시설물 안전·유지관리기술) 시설물점검·진단기술	
기술수준	 □ 기술개념확립 □ 연구실환경검증 □ 시제품제작 ■ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화 	
시장전망	* 국내 안전진단 시장 : 1000억원 * 국내 시설물 유지관리 시장 : 3,5조원	
기술문의	한국과학기술원 yimhongjae@kaist.ac.kr	
이전문의	(주)윕스 구경아 선임연구원 Tel. 02-726-1061 E-mail. kka@wips.co.kr	

고속 연속 번들 조정 기반의 실시간 영상 지오레퍼런싱

기/술/개/요

영상 취득 시스템으로부터 획득한 영상의 외부표정요소(EOP)를 실시간으로 결정하여 공간정보를 신속히 생성(Rapid Mapping)하는 기술로써, 무인기 항법/정찰, 스마트폰 측위/증강현실, 차량네비게이션 등에 활용 가능

기술의 필요성

- 재난/재해 사전대비 및 피해상황의 신속·정확한 파악
 - 재난/재해 피해 복구 비용 절감을 위한 시장 성장가능성 밝음 (국회예산처, 2005)
- 근거리 무인정찰/감시 시장의 확대
 - 근거리 근접감시용 무인항공기의 국내 매출 규모는 2020년까지 약 1조원에 이를 것으로 예상 (대한항공, "근접감시용 무인항공기 기획서, 2007)
- 고품질 3차원 공간정보의 수요 증가
 - 세계 공간정보분야 성장률 6%대. 고품질 공간정보 Portal 서비스 시장의 확대 추세

특징 및 효과

● 특징

이동형 지상국 / 중저가 센서를 고도의 SW로 보완 / 센서데이터 실시간 전송 및 처리 / 공간정보 고속생성 / AT(Aerial Triangulation)결합기반 정확도개선 / 무기준 고속자동 처리

◉ 기술적 효과

실시간 공중자료 획득 시스템 개발

·실시간 공중 모니터링 데이터 획득과 고속 자동 처리

정확도 향상

· 지상점 좌표 기준으로 ±4cm이내 정확도로 미지수 측정 / 7배 이상 정확도 개선

처리속도 향상

- · 평균 0.015초 처리시간 소요
- · 약 20배 빠른 처리속도

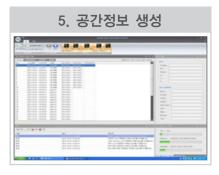
● 경제적 효과

가격 경쟁력

- · 실시간 자동처리에 따른 시간/인력 소요 절감
- · 고도의 SW보완으로 향상된 센서 성능에 따른 비용 대폭 절감

As is	To be
고가의 센서/ 장비탑재	중저가 센서를 고도의 SW로 보완
	CONTROL OF THE PARTY OF T


기술 구현 과정


● 실시간 공중자료 획득 및 공간정보 생성 Process

수요처 및 권리현황

수요처

기술 수요	적용처
· 무인정찰/감시 시스템 제조社 · 무인항공기 제조社 · 스마트폰/카메라/캠코더 제조社 · 차량 항법장치 제조社	· 방재/국방/공간정보/IT분야

- 국내 등록특허 4건 / 출원특허 3건
- 소프트웨어 등록 4건
- 대표특허

발명의 명칭	특허번호	비고
고속 영상 지오레퍼런싱 방법 및 장치	10-1105362	등록
지리 참조 영상 획득을 위한 휴대용 멀티센서 시스템 및 그 방법	10-1224830	등록

추가기술정보		
기술분류	국토공간 개발기술〉 국토지능화 · 공간정보	
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 ■ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화	
시장전망	* 세계 무인기 시장규모: 100억달러(2012년) * 세계 공간정보 시장규모 : 83.4억 달러(2010년)	
기술문의	서울시립대학교 iplee@uos.ac.kr	
이전문의	(주)윕스 구경아 선임연구원 Tel. 02-726-1061 E-mail. kka@wips.co.kr	

현장 적용형 USN 센서노드 기술

기/술/개/요

USN(Ubiquitous Sensor Network)기반 시설물 관리 센서 네트워크에서 전력 소모 효율성을 고려한 적합한 망 토폴로지를 구성하고, MAC 및 네트워크 계층 적용을 센서노드가 구축된 현장에 적합하도록 적용시키는 기술

기존 기술의 문제점

- 토폴로지에 따라 재구성되는 센서 네트워크로 인한 불편
 - 구축된 네트워크에서 토폴로지가 다른 네트워크로 재구성해야 할 경우, 센서노드 프로그램의 재탑재·재구축의 어려움
 - 서비스 및 개발의 단순화.신속한 적용이 필요
- ◉ 현장 고려하지 않은 네트워크 프로토콜로 인한 에너지효율 저조
 - 현장을 고려하지 않은 네트워크 프로토콜로 저전력 센서 네트워크 구성이 어려워 에너지 효율이 떨어짐

차별성 및 효과

● 차별성

IEEE802.15.4 통신 기반 프로토콜 스택 재구성 / 배터리 및 태양광 혼용의 효율적인 전력 관리

● 기술적 효과

USN 서비스 구축 단순화 및 신속한 적용 가능

· 서비스 변경 없이 환경에 적합한 최적의 네트워크 구성으로 서비스 구축 및 개발 단순화, 신속한 적용 가능

다양한 센서 네트워크의 지속 운영 가능

· 다양한 센서 모듈들을 온라인 상태에서 Plug&Play 형태로 추가할 수 있어 센서 네트워크의 지속적인 운영 가능

◉ 경제/산업적 효과

에너지 효율성 증가로 전력소모 저감

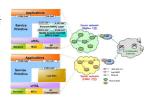
- · 태양광 에너지 활용으로 인한 센서노드의 생존기간 확장
- · 배터리/태양광 혼용으로 인한 효율적인 전력관리

USN 네트워크 기반 산업의 조기 구축을 유도

· 프로토콜 패키지화를 통한 다양한 센서망 구축, 환경, 화재, 빌딩관리 등 다양한 시장의 USN 네트워크 기반 조기 진입 가능

● 개발현황

- 세종시 96번 국도 테스트베드에서 가드레일 충격감지 서비스 현장 적용(2012~)
- 대규모 집적시설 감시보안을 위한 침입 및 화재 감지 현장적용(2013~)


기술이전 내용 및 범위

- USN센서노드 설계기술/ 센서노드 제어기술 / 센서모듈 정합기술 / 통신망 정합 및 구성기술 / 저전력 및 에너지 획득 제어기술

● 시스템 구성

도심환경 적응형 센서망 구축

- ✓ IEEE802.15.4 통신 기반 프로토콜 스택 재구성
- ✓ ZigBee /Light Weight MAC 프로토콜

에너지 효율적 센서 네트워크

- ✓ Sleep 모드/Pown Down 모드 제어
- ✓ 태양광 에너지 획득 (센서노드 생존기간 연장)

다양한 센서 인터페이스

- ✓ 온도, 습도, 충격, Still Image,
 먼지, PIR, CO2 등 다양한 응용 적용
 (ADC, I2C, SPI, UART, GPIO, RS-485 등)
- ✓ Plug & Play 방식의 센서모듈 탈부착 자동인식

최적 비용/성능 센서망 배치 자동화 수단 제공

 ✓ 센서 Coverage를 적용하여 실세계 환경의 전파 특성을 고려한 최적 센서 배치

수요처 및 권리현황

● 수요처

기술 수요	적용처
· 센서노드 제조社	· 고속도로 및 국도
· 네트워크 SI 관련社,	· 지자체 시설물
· USN/IP 장비 제조社	· U-City 및 고층빌딩

- _ 국내 출원 및 등록특허 8건
- 국제(미국) 출원 및 등록 특허 3건
- 대표특허

발명의 명칭	특허번호	비고
반선형 센서네트워크를 위한 저전력 매체접근제어 방법	10-1042600	등록
센서노드 및 센서노드 구성 방법	10-1117315	등록

추가기술정보		
기술분류	교통안전 및 환경 〉교통안전 관리〉도로교통안전관리	
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 ■ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화	
시장전망	* USN 기반 세계 도로교통 시장, 2016년 시장규모 56억 달러 * USN 기반 국내 도로교통 시장, 2014년 시장규모 3570억원	
기술문의	한국전자통신연구원 bcchoi@etri.re.kr	
이전문의	(주)윕스 구경아 선임연구원 Tel. 02-726-1061 E-mail. kka@wips.co.kr	

수출입 원자재(코일 등)용 원자재 거치장치

기/술/개/요

벌크화물 운송 및 보관시 컨테이너 바닥에 전해지는 집중하중을 분산시켜 컨테이너 피해 최소화, 안전성 증대, 물류비 절감이 가능한 회수형 수송용기

기존 기술의 문제점

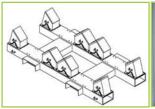
● 비효율적 거치장치

- 일회성 고박장치 사용·해체작업 복잡성으로 인한 고박비용 및 시간 증가
- 해상 운송 불안정성으로 인한 육상운송 불가피 (수송비 증가 원인)
- 운송 중 코일 이탈로 인한 코일 제품 손상 및 인명 피해

● 코일 및 컨테이너 파손

- 운송 중 롤링 및 피칭에 의한 지지대 파손으로 원자재 손상, 컨테이너 파손 발생
- 주변 일반 화물 컨테이너로의 추가 손상 발생으로 선적 기피
- 하중 분산 불균등으로 컨테이너 바닥 침하 현상 발생
- 라싱 작업 시 부실 작업에 따른 안전사고 발생 우려

차별성 및 효과

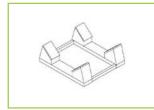

● 차별성

하중분산에 따른 컨테이너 및 화물 손상 위험 감소

● 기술적 효과

원자재 · 컨테이너 파손방지 및 안정성 증대

- · 수출입 원자재(코일 등) 손상 및 인명 피해 감소로 안정성 증대
- ㆍ 하중 분산에 따른 컨테이너 파손 방지
- · 원자재(코일 등)회전율 향상 및 품질관련 운송클레임 개선



● 경제적 효과

물류비 약 7.6% 절감

- · 일회성 거치대에서 반영구적 거치장치로 교체
- · 해상 운송에 따른 수송비 절감 (해상 운송 중 지지대 파손 방지)
- · 고박 비용 및 시간 절감 (기존 대비 2만원, 8ton 2개 적입시)
- · 물류환경 개선효과 분석 결과 환경비용을 포함한 물류비 약 7.6% 절감 효과

원자재 거치장치 성능시험

Rolling Test

Pitching Test

- ✓ 평판 컨테이너 2단적 위에 기울여 5분 거치 Test ✓기울기 각도 : 최대 20°
- ✓코일과 거치장치의 유동현상 미발생

Rolling & Pitching Test

2,220L×1,200W×431H

✓ Reach Stacker 이용하여 선체 움직임 물리적Test ✓ 기울기 각도 :±30° ✓ 코일과 거치장치의 유동 현상 미발생

원자재 거치장치 종류

A type

2,220L×1,200W×453H

✓ 우레탄 재질의 Support패드 ✓ 12톤 코일 1개 또는 6톤 코일 2개 동시적재

B type

- ✓우레탄 재질의 Support패드
- ✓Support 모양을 삼각형으로 제작
- ✓12톤 코일 1개 또는 6톤 코일 2개 동시적재

C type 2,220L×1,200W×453H

✓ 고무 재질의 Support패드 ✓ 12톤 코일 1개 또는 6톤 코일 2개 동시적재

D type

베드

1,100L×1,000W×370H

- ✓고무 재질의 support패드 ✓소형 코일을 위한 저가형
- √5톤 코일 1개 적재

수요처 및 권리현황

수요처

기술 수요	적용처
· 철강제조社	· 해운 · 물류 社

권리현황

- _ 국내 등록특허 1건
- 대표특허

발명의 명칭	특허번호	비고
코일 거치장치 (APPARATUS FOR MOUNTING COIL)	10-1178188	출원

추가기술정보	
기술분류	물류기술〉물류운송기술
기술수준	□ 기술개념확립 □ 연구실환경검증 ■ 시제품제작 □ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화
시장전망	* 철강 주요제품 생산량 ' 08년 64,989톤 * 철강산업에서 물류비 비중이 매출 총액의 12%로 매우 높음
기술문의	연세대학교 pimeson@yonsei.ac.kr
이전문의	(주)윕스 구경아 선임연구원 Tel, 02-726-1061 E-mail, kka@wips.co.kr

항공관제용 통합정보처리 시스템

기/술/개/요

기존 레이더 기반 감시정보와 미래형 CNS 기술의 통합으로 항행 위치 정확도 개선 및 3-D 화면으로의 관제를 구현한 최첨단 항공관제시스템

기존 기술의 문제점

- 다중레이더 처리 기법으로 인한 정확성 미비
 - 기존 기술은 차세대 항행시설의 다중 센서 기반으로 개발된 것이 아니라 다중레이더(MRT)처리 기법으로 개발되어 위치의 정확성이 미비
- 2-D 관제화면 하의 관제
- 궤도 모델 링의 낮은 정확도
- 항공관제시스템의 전량 수입 의존
 - 국내 항공관제시스템 시장은 모두 해외 업체가 장비를 납품하고 국내업체는 단순 설치만 진행

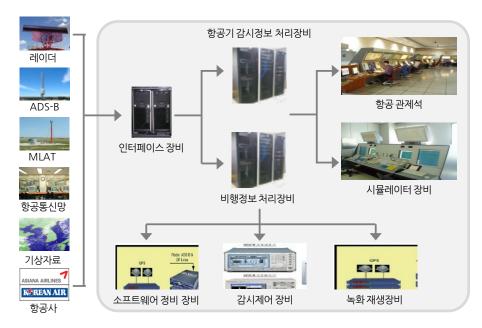
기술구성 및 장점

● 차별성

다중 센서 · TEM(Total Energy Model)을 적용한 항공관제시스템

🖲 효과

위치 · 궤도 예측 정확도 개선 및 항공관제시스템 국산화


- · 기존 국내에서 운영하는 시스템에 선진 및 최신 기술을 추가로 해외에 판매 가능토록 개선
- ㆍ 위치 정확도 및 궤도 예측 정확도 보장 및 관제녹화, 감시, 제어 등의 주변 장비 통합 개발
- ㆍ 감시자료, 비행자료 처리의 항공기 위치 정확도는 유럽표준 만족

구성	내용	효과
감시자료처리시스템(SDP)	다양한 종류의 센서 이용 및 퓨젼처리	항공기 위치 정확도 향상
급시시표시니시스 급(SDF)	상호 작용 다중 모델(IMM) 필터 적용	여러 비행모드에서 위치 정확도 향상
비행계획에 근거한 4D 비행궤도 예측 TEM(Total Energy Model) 개선		정확한 비행궤도 예측
	Vincenty Formular 알고리즘을 이용한 지점간 거리 산출 정확도 개선	지점간 거리정확도 개선
	기상레이더 및 구름사진자료 관제화면에 직접 연동	관제사에게 기상자료 즉각 제공
현시시스템(CWP)	주요 장애물의 3D 맵 처리로 경고 지역의 판단정보 제공	즉각적인 경고 판단
		필요이벤트만 선정 자동 맵 작성 기능

개발현황 및 기술구현과정

- 기본관제 시스템(1,2단계) 개발 및 실운용자의 테스트 검증 완료
 - 현재 상품화 및 신뢰성 보완 진행 중
- 기술 구현 과정

수요처 및 권리현황

수요처

기술 수요	적용처
· 항공관제 · SI 업체 · 항공사 · 공항공사	· 항공교통관제(항공) · 항공교육훈련(항공)

권리현황

	발명의 명칭	특허번호	비고
항공	관재를 위한 통합정보처리 시스템	10-2011-0114351	출원

추가기술정보	
기술분류	항공교통기술〉항행안전시설 기술〉항공관제시스템기술
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 ■ 신뢰성평가 □ 상용품 제작
시장전망	* 전세계 항행시스템 시장규모('08)약 2,8조 * 국내 60% 및 외국 5% 점유시 년간 991억원 매출예상 (국내 253억원, 해외 738억원)
기술문의	인하대학교 sschai001@inha.ac.kr
이전문의	(주)윕스 구경아 선임연구원 Tel. 02-726-1061 E-mail. kka@wips.co.kr

지하철 터널공기 유입방지 장치

기/술/개/요

지하철 출입문과 승강장스크린도어(PSD) 개방 시 에어튜브 팽창 및 밀폐 기술을 적용하여, 터널 내 오염 공기의 승강장 및 차량 내 유입을 방지하고 실내공간을 청정하게 유지하며, 실내 냉방 효율 저감을 방지하는 장치

기존 기술의 문제점

- ◉ 승강장스크린도어 개방 시 터널공기의 실내유입에 따른 지하역사 오염도 증가
 - 승강장스크린도어 설치로 인한 승강장과 터널 공기의 분리
 - PSD개방 시 급속히 유입되는 오염물질의 차단은 불가
- 지하철 출입문 개방 시 터널공기 차량유입에 따른 차량 내 오염도 증가
 - 2~3분 주기의 출입문 개방(평균 20초)에 따른 외부공기 실내 유입
 - 특히 터널공기의 유입은 온열쾌적성은 물론 실내 오염도를 증가시킴
- ◉ 터널공기 실내유입에 따른 역사 및 차량 냉방부하 증가 및 온열불쾌감 증대
 - 여름철 고온 습하며 고농도의 오염물질이 포함된 터널공기의 지하역사 및 차량 내 유입은 냉방부하 증가. 재실자의 불쾌감 유발의 원인이 됨

차별성 및 효과

● 차별성

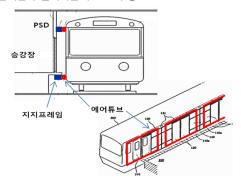
지하철 객실, 승강장, 터널의 공간적 분리

효과

미세먼지 유입차단에 따른 실내오염 저감. 냉방부하 감소에 따른 냉방효율 증대

- · PSD가 설치되어 있는 기존 승강장의 PSD후면부에 부가 장착 가능
- · 실험실규모의 기술을 넘어 실제 운영기관에 설치되어 운영될 수 있도록 시범역사 구축 필요
- · 국내 지하역사는 물론 PSD가 설치된 국외 지하철 시스템에도 적용 가능한 세계 선도 기술

- ◉ 승강장스크린도어 뒷면에 에어튜브 방식의 밀폐부 설치
- PSD개방, 차량출입문 개방신호와 연동되어 에어튜브 팽창 및 밀폐
 - · 차량 출발 시 PSD닫힘과 동시에 에어튜브 수축이 이루어짐
 - · 플랫폼과 차량 사이 다양한 간격에 적용 가능, 승객의 발빠짐 및 귀중품 분실 방지의 부가적 효과 발생
- 시스템 구성


현재의 터널공기 유입 실태

- ✓차량 출입문과 PSD사이의 터널공간
- ✓ 터널 오염물질의 차량과 승강장 유입
- √ 냉방에너지 유출 및 냉방부하 증가

터널공기 유입장비 장치 구성

- ✓ PSD 후면부에 지지프레임 설치(간격조절용)
- ✓지지프레임위에 에어튜브 설치
- ✓하나의 차량출입문을 둘러싸거나, 여러 개의 출입문을 한꺼번에 둘러싸는 구조로 구성

수요처 및 권리현황

수요처

기술 수요	적용처
· PSD 제조 社	· 전국 도시철도
· 철도전기신호 관련 社	· 국외 지하 도시철도

- _ 국내 등록특허 1건
- 대표특허

발명의 명칭	특허번호	비고
터널공기 유입방지 장치	10-1092903	등록

추가기술정보	
기술분류	건설교통〉건설환경설비기술
기술수준	■ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화
시장전망	* 수도권 지하역사 : 서울메트로 120개, 도시철 도공사 148개, 9호선 25개 등 총 293개 PSD설치역사 적용가능 * 국외 지하역사 : 홍콩, 싱가폴, 일본 등 PSD설치 역사 진출 가능
기술문의	한국철도기술연구원 sbkwon@krri.re.kr
이전문의	(주)윕스 구경아 선임연구원 Tel. 02-726-1061 E-mail. kka@wips.co.kr

차량 안전용 뉴로모르픽 시각 인지 기술

기/술/개/요

시각센서를 이용하여 사람의 활동을 모니터링하고, 차량 내 탑승자의 상태 인지 및 근접 대인 사고 위험 사전 감지기능으로 교통안전 강화를 도모하는 차량/교통 안전용 뉴로모르픽(뇌모방 ICT) 비젼(Vision) 기술

기존 환경의 문제점

- 사용환경 제한적
 - 기존 영상 센서 기반 차량용 안전기술은 대낮에만 작동 가능하며, 야간이나 우천시 사용 불가능
- 제작 비용 증가로 인한 고비용 소요
 - 차량 내 탑승자 인식 시 좌석무게 센서, 안전띠 센서, 에어백 작동 인식 설치로 차량제작비용 증가
 - 기존 운행중인 모든 차량에 센서 추가 장착시 고가의 제품 적용으로 고비용 소요

차별성 및 효과

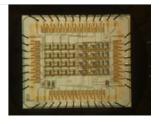
● 차별성

지능화된 차량용 센서 뉴로모르픽

이 기술적 효과

주/야간 및 우천시 강인한 성능

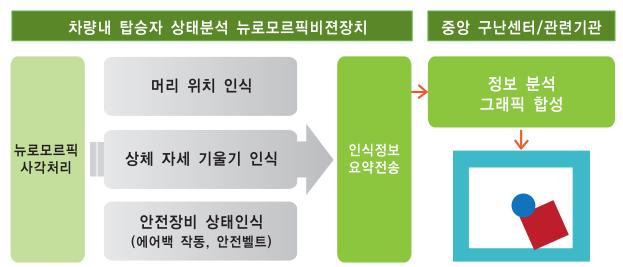
- · 근접한 도로변 보행자 인식 가능
- · 사고위험 사전 감지
- 교통사고 피해 최소화



◉ 경제적 효과

제작 비용 절감

- · 뉴로모르픽 영상센서 모든 차량 적용 가능
- · 카블랙박스형으로 차량 장착 가능
- · 뉴로모르픽 ASIC확장 가능



기술 개요 및 활용방안

뉴로모르픽 비젼의 차량용 안전 기술 시스템화

활용방안

- 긴급 구난 시스템 구축
 - · 차량에 장착하여 중앙구난시스템 또는 서비스 센터에 연결하여 운행함으로써 탑승자의 이상상황 인식, 통보
- 지능형 감시 시스템 확장 구축
 - · 차량 외부 환경 인식으로 뉴로모르픽 비젼을 확장 적용하여 안전 운전 지원 혹은 중앙관제 센터와의 네트워킹을 통해 교통사고를 비롯한 도로, 국토 환경 상황의 지능형 감시시스템 확장

수요처 및 권리현황

🌘 수요처

기술 수요	적용처
차량 제조社차량 기술 개발社 및 제조社카블랙박스 제조社CCTV 관제 시스템 개발社	 지자체/중앙 정부 긴급 구난분야 지자체/중앙정부 교통사고 관제 분야 지자체 대중교통 탑승자, 운전자 안전감시/관제 분야 지자체/기업/중앙정부의 안전 감시/관제 분야 및 해안선 감시

◉ 권리현황

- 국내 출원특허 5건 (PCT출원 1건)
- 대표특허

발명의 명칭	특허번호	비고
시각신경 회로장치 및 그 시각신경 회로장치를 이용한 객체 탐색방법, 및 객체탐색 시스템	10-2011-0072093	공개
시각신경 회로장치 및 이를 이용한 시각신경 모방 시스템	10-2012-0070092	출원

추	가기술정보
기술분류	도로교통〉교통안전관리기술 정보/통신〉정보통신 모듈/부품
기술수준	□ 기술개념확립 ■ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화
시장전망	* 해외 영상인지시장 : 30억US\$ * 해외 차량탑재안전기술시장: 210억 US\$
기술문의	한국과학기술원 i,s.han@kaist.ac.kr
이전문의	(주)윕스 구경아 선임연구원 Tel. 02-726-1061 E-mail. kka@wips.co.kr

안전주행을 위한 차량간 무선통신(WAVE)시스템

기/술/개/요

고속주행 차량의 V2V,V2I 통신을 통해 돌발상황 및 위험상황을 실시간으로 감지하여 연쇄사고 및 추돌 사고를 방지하고, 대용량 데이터 전송으로 운전자에게 각종 편의 정보를 제공하여 안전한 도로 환경을 구축하는 차량 환경용 무선접속(WAVE/ Wireless Access in Vehicular Environment) 시스템

기존 기술의 문제점

- 인프라간 통신으로 인한 정보 실시간성 저하
 - 이동통신, WiFi, DSRC 등 기존무선통신 기술: 중앙서버로부터 정보를 주고 받는 인프라간 통신으로 정보의 즉각적인 교환 및 능동적인 차량간 통신 불가
- 신속한 도로상황 및 추가사고 방지 어려움
 - 전광판, 교통방송 등 기존 도로정보 전달 방법: 일부 도로에 설치된 센서를 통해 얻어진 국지정보의 전달. 가공으로 정확성 저하
 - 전광판 설치, 운용비용 발생, 악천후 시 식별 어려움으로 신속한 도로상황 전달과 추가사고 방지 어려움

차별성 및 효과

● 차별성

도로전용 통신시스템 구축 및 보급

이 기술적 효과

돌발상황 인지 직후 0.1초 내 돌발상황 전달

· 교통사고 인지 직후 0.1초 내 주변 차량에 전달, 연쇄 추돌 및 2차 사고 예방

고속주행 연속 통신 및 대용량 데이터 서비스

· 기존 DSRC 통신 시스템 대역폭은 1Mbps 수준, 본 기술은 27 Mbps 대역폭을 지원함으로써 각종 안전 서비스 및 VOD,인터넷 등과 같은 운전자 편의 서비스 가능

◉ 경제 / 산업적 효과

고속도로 사고 70% 감소로 도로 혼잡비용 및 인적, 물적자원 절감

· V2X 통신 기반 차량 안전서비스가 제공될 경우, 사고의 70% 이상 감소 전망 (미국 도로교통안전국(NHTSA))

미국, 유럽, 중국시장 선점을 위한 경쟁역량

- · 2016년부터 미국 신규 자동차의 WAVE 의무 장착화를 필두로 유럽, 중국에서도 WAVE 시장성장 전망
- · 기술확보를 통하여 시장 선점을 위한 역량 강화

개발현황

- 세계 최초 V2X 통신 실도로 시연(2010 부산 ITS 세계대회)
 - · 부산~울산 고속도로 5Km 구간에서 V2I, V2V 서비스 시연(응급차량 및 전방사고차량 등 돌발상황 알림, 전방 차량 상태정보 교환, 차량간 대화형 서비스, 실시간 CCTV streaming 등)
- 여주 스마트하이웨이 체험도로에 테스트베드 구축 및 운용, 주파수 연구 활동
- 국제 표준(IEEE802,11p) 규격 전용 칩 개발

● 시스템 구성

IEEE802,11p 규격 전용 칩

✓ IEEE802,11p 규격 전용 칩 (PHY+MAC)

WAVE 통신 모듈

✓ 기지국용 WAVE 통신 모듈(RSE)✓ 차량 용 WAVE 통신 모듈(OBE)✓ WAVE 통신용 RF모듈

WAVE관련 소프트웨어

✓ WAVE Protocol SW 802,11p IEEE1609.3,4

복합기지국

✓ 오픈 플랫폼 기반 복합기지국✓ WAVE, DSRC, Wi-Fi

수요처 및 권리현황

● 수요처

기술 수요	적용처
· 완성차 제조社	· 자동차
· ITS 시스템 제조社	· ITS 운용, 톨링

- 국내 공개특허 2건
- 대표특허

발명의 명칭	특허번호	비고
WAVE 통신시스템 및 핸드오버방법	10-2011-0077721	공개
과속 단속 방법 및 이를 적용한 통신 단말장치	10-2011-0146512	공개

추가기술정보	
기술분류	정보/통신)ITS/텔레매틱스)ITS 단말 및 기기
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 ■ 실제환경검증 □ 신뢰성평가 □ 상용품 제작 □ 사업화
시장전망	* 전 세계 텔레매틱스 시장은 2020년까지 \$703억 전망 * 국내 텔레매틱스 시장은 2020년까지 \$44억 전망
기술문의	전자부품연구원 limkt@keti.kr
이전문의	구경아 선임연구원 02-726-1061 kka@wips.co.kr

경제성 및 효율성을 확보한 배터리 자동교환 전기버스 시스템

기/술/개/요

배터리 교환형 충전방식으로 배터리 관리 편의 증대, 차량 가격 및 충전, 장착시간을 절감하여 경제성과 효율성을 갖춘 전기버스 시스템

기존 기술의 문제점

- 비효율적이고, 고가 배터리 사용으로 인한 전기자동차 활용의 한계
 - 전선을 이용한 충전방식의 전기자동차의 경우 고가 배터리 장착으로 인한 차량 단가 상승
 - 불규칙하고 짧은 운행거리로 인한 한계
- 긴 충전시간과 집중된 충전수요로 인한 비효율성
 - 플러그인 방식의 충전 인프라는 사용시간 대비 긴 충전시간으로 비효율적
 - 특정지역에 집중된 충전수요로 인한 전력망 과부하 위험 높음

차별성 및 효과

차별성

전기차 충전방식을 배터리 교환형식으로 개선하여 대중교통에 적용

이 기술적 효과

교환시간 40초, 충전시간 20분 중·장거리 노선에서도 안정적 주행

· 충전시간(급속충전 시)20분,배터리 교환시간 40초 로 대중교통 운행 차질 없음

안정적인 충전 인프라 운영

· 변전소 주변 충전플랜트에서의 배터리 충전으로 전력수요 분산 유도, 과부하 방지

◉ 경제적 효과

온실가스 36% 및 연료비용 70% 절감

차종	연간 원료비(원)	연간 온실 가스량(CO2)
CNG버스	53,093,750	138
클린디젤하이브리드	32,040,000	104
배터리 자동교환 전기버스	16,000,000	88

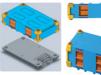
^{*} CNG 버스 연비 : 현대자동차 자체조사 필드연비 (2011 환경부 보도자료)

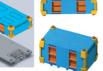
^{*} 디젤 단가 1602원/L, CNG 단가 849.5원/N㎡, 산업용 전기 판매단가 80원/KWh (2011, 1, 1 기준)

개발현황

- 화성시 테스트베드 운영 중, 자동차 성능 시험연구소 인증 대기 중
- 포항시 시범 도입으로 배터리자동교환시설 건설 중
 - · 포항시는 배터리 자동교환시스템, 배터리 자동교환시설, 전기버스, 운영구축시스템을 도입하여 2013년 7월부터 노인복지회관 셔틀버스로 시범운행에 들어갈 계획임(중앙일보, 2013.01,31)

● 시스템 구성


배터리 자동교환 전기버스


- ✓ 최고 시속 80Km/h, 배터리 탈부착 횟수 20.000회 가능
- ✓ 버스 상단부 배터리 장착 모듈 충격흡수장치(서스펜션)
- ✓ 단/장거리 버스 2type 구성

스마트 배터리

- ✓ 배터리 크기 및 용량: 1.902.5mm(L) x 1.110mm(W) x 527mm(H), 42kWh
- ✓ 무게: 620kg(모듈 360kg)

자동 배터리 교환 시설

- ✓ 배터리 교환로봇(이송속도 15~20m/min) 및 제어시스템을 이용, 방전된 배터리를 40초내 교환 가능
- ✓ 급속충전기능(20분) 탑재

비상 충전 시스템

- ✓ 돌발상황 대비, 50kW급 충전기를 탑재하여 급속충전 지원
- ✓ 10kW급 고전압발전을 통해 탑재된 배터리 자체 충전
- ✓ 통합제어기를 통한 인프라 연계

수요처 및 권리현황

🌘 수요처

기술 수요	적용처
· 전기버스 제조社,	· 지자체 대중교통(버스)
· 배터리 제조社, SI 관련社	· 해외 대중교통(버스)

권리현황

- 국내 공개특허 20건
- PCT 공개특허(미국, 유럽, 일본, 중국, 캐나다) 8건
- 대표특허

발명의 명칭	특허번호	비고
배터리 교환방식의 전기차 충전스테이션 시스템	10-0032024	출원
전기버스 및 전기버스 배터리 교환 시스템	10-0010070	출원

추가기술정보	
기술분류	도로교통〉교통시설기반기술/ 자동차기반기술
기술수준	□ 기술개념확립 □ 연구실환경검증 □ 시제품제작 □ 실제환경검증 □ 신뢰성평가 ■ 상용품 제작 □ 사업화
시장전망	* 세계 버스 시장, 2016년 시장규모 615억 달러 예상 * 국내 버스 시장의 경우 2012년 1조1,000억원 예상
기술문의	국민대학교 jspark@kookmin.ac.kr
이전문의	(주)윕스 구경아 선임연구원 Tel. 02-726-1061 E-mail. kka@wips.co.kr

